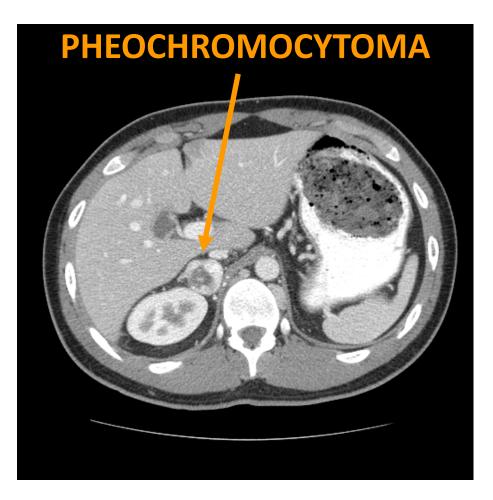
Pediatric Pheochromocytoma/ Paraganglioma (PPGL)

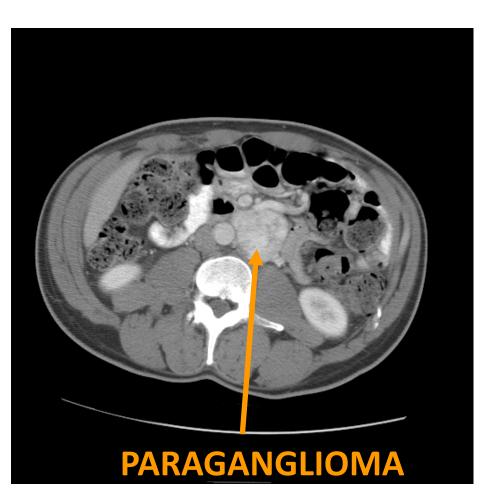
Steven G. Waguespack, MD Professor

Dept. of Endocrine Neoplasia and Hormonal Disorders Department of Pediatrics-Patient Care

Disclosures:

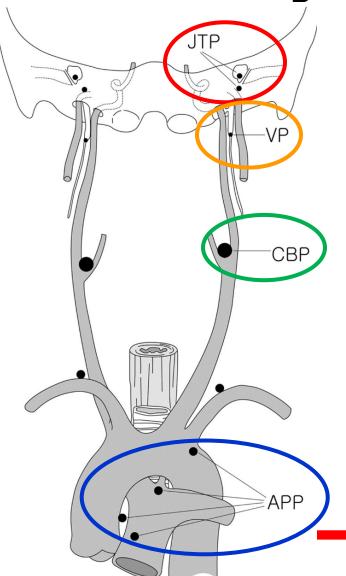
None


Objectives



- Discuss the clinical presentation of PPGL in children, including the most common hereditary syndromes
- Highlight differences between children and adults with PPGL
- Discuss the diagnosis and treatment of pediatric PPGL, including metastatic disease

Chromaffin Cell Tumors*



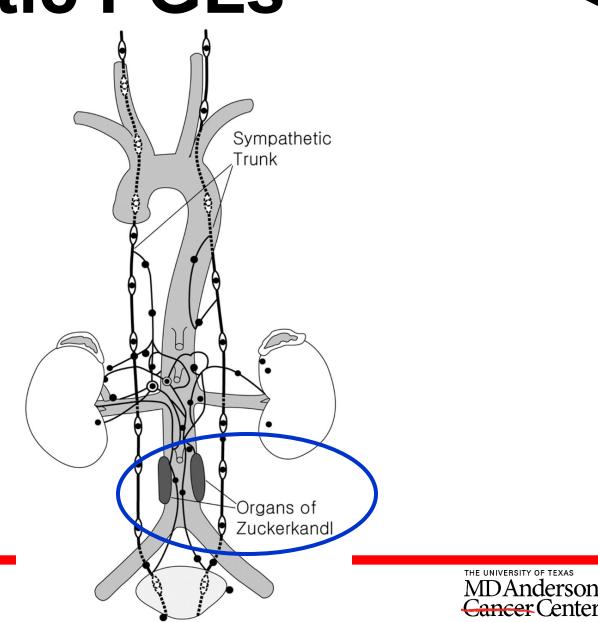
*PHEO and sympathetic/functional PGL arise from chromaffin cells; parasympathetic or nonfunctional PGL are known as non-chromaffin paragangliomas

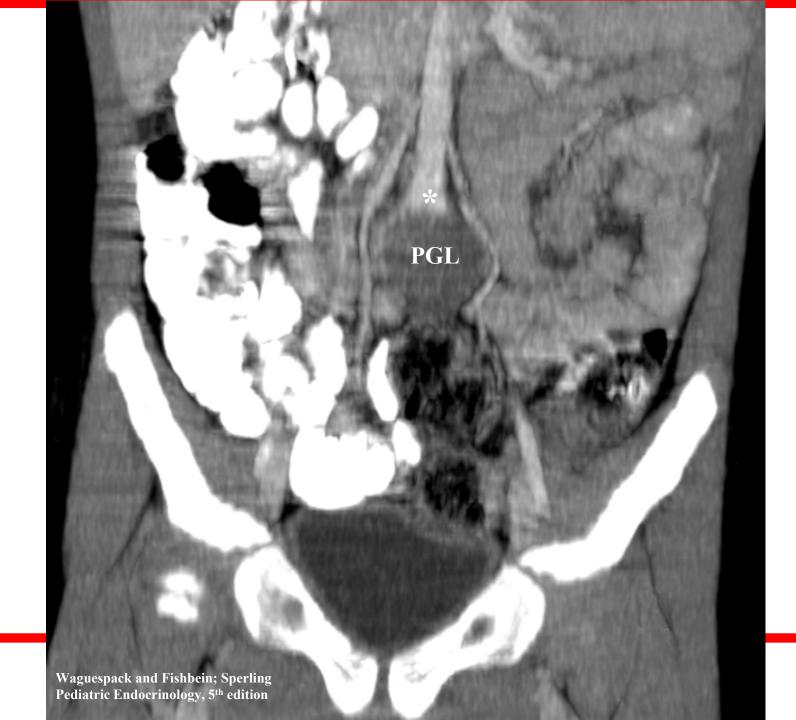
Parasympathetic PGLs

- Historically called "glomus tumors" or "chemodectomas"
- 1-3% functional
- Anatomic tumor locations
 - Glomus tympanicum/jugulare or jugulotympanic
 - middle ear mass, tinnitus, hearing loss
 - Vagal
 - neck mass, dysphagia, hoarseness
 - Carotid body
 - neck mass, cranial nerve palsy
 - Aortopulmonary body
 - none, unless large enough to cause pain or shortness of breath

Parasympathetic PGLs

Glomus tympanicum (middle ear PGL)


Glomus caroticum (carotid body PGL)


Sympathetic PGLs

- Most hypersecrete catecholamines
- Posterior mediastinum and abdomen/pelvis
 - Organs of Zuckerkandl

enter

Making Cancer History

PPGL in Children

- Very rare--Incidence of 2/million/year
- 0.8-1.7% of hypertensive children
- 13% of all PPGL with childhood presentation
- Average age of diagnosis 13 years
- Extra-adrenal (up to 60%) & bilateral (10-25%)
- Up to 80% hereditary
- More likely to be metastatic (esp. PGL)

PPGL: Children vs Adults

Table 1.	. Demographic and Tumor Characteri	stics of Pediatric and Adult Patients With PPGLs
----------	------------------------------------	--

Characteristics	Pediatric	Adult	P Value
Ν	95	653	
Age at initial diagnosis ^a	13.3 ± 3.5	44.7 ± 14.4	
Male	55.8% (53/95)	48.1% (314/653)	0.0980
Primary tumor locations			
Solitary adrenal	22.1% (21/95)	56.2% (367/653)	< 0.0001
Solitary extra-adrenal	33.7% (32/95)	21.6% (141/653)	< 0.0001
Bilateral adrenal	11.6% (11/95)	8.7% (57/653)	0.2020
Multifocal ^b	32.6% (31/95)	13.5% (88/653)	< 0.0001
Hereditary cases ^c	80.4% (74/92)	52.6% (273/519)	< 0.0001
Multifocal ^b Hereditary cases ^c Recurrent primary tumors ^d Metastatic disease	29.5% (28/95)	14.2% (93/653)	< 0.0001
Metastatic disease	49.5% (47/95)	29.1% (190/653)	< 0.0001
No. N/D phenotype	93.2% (68/73)	57.3% (337/588)	< 0.0001

Abbreviations: N/D, noradrenergic/dopaminergic.

^{*a*}Age is shown as mean \pm standard deviation.

^bMultifocal locations indicate multiple extra-adrenal tumors or extra-adrenal and adrenal tumors but exclude bilateral adrenal tumors unless accompanied by one or more extra-adrenal tumors.

^cResults were retrieved from 611 patients who underwent genetic testing.

^dRecurrent primary tumors are defined as recurrences at an original site of tumor resection as well as new primary tumors at other locations a year or more after diagnosis of the first primary tumor.

PPGL in Children—Clinical Presentation

- 70-90% present with HTN, usually sustained (up to 2% of hypertensive children)
- Sweating, visual problems, weight loss, nausea/vomiting, and polyuria/polydipsia
- Decreased school performance & behavioral problems
- Classic triad (paroxsymal sweating, HA, palpitations) uncommon
- Symptoms less common in inherited tumors

PHEO/PGL—Signs & Symptoms

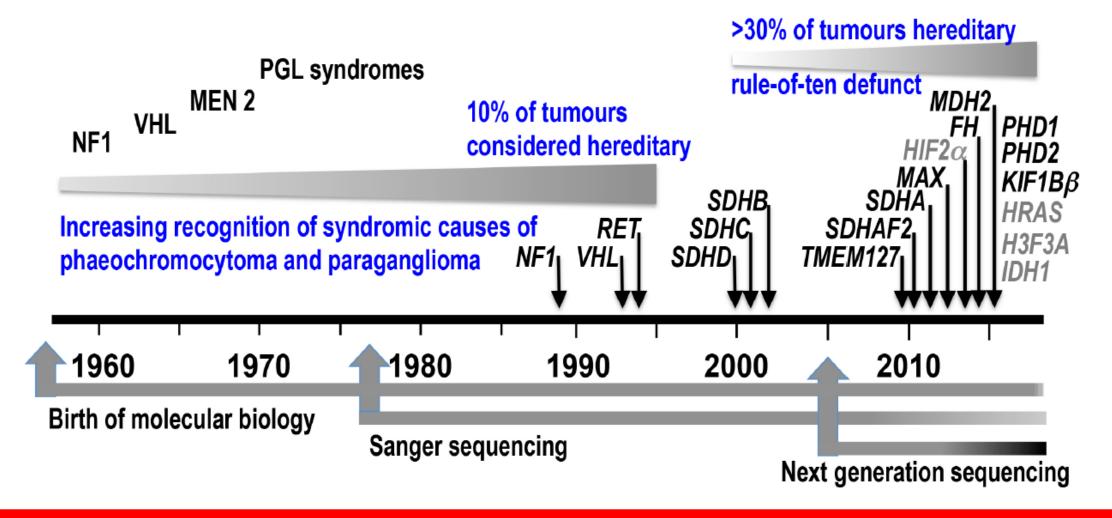
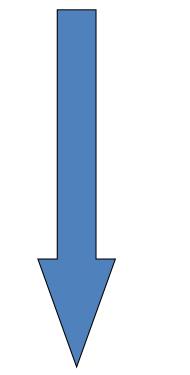

	<20	>20
Hypertension		
Sustained	93%	68%
Without paroxysms	63%	58%
With paroxysms	37%	42%
Paroxysmal	7%	26%
Normotension	0	5%
Other symptoms		
Headache	95%	90%
Sweating	90%	92%
Visual disturbances	80%	47%
Neurologic signs	65%	57%
Tachycardia, dysrhythmias	35%	72%
Weight loss	15%	72%

TABLE 1. Pheochromocytoma: Clinical findings according to age

Barontini et al. Ann. N.Y. Acad. Sci. 1073: 30-37 (2006).

The Genetics of PHEO/PGL



Eisenhofer G et al. Clin Biochem Rev 2017

Pediatric PPGL

Most Common

Least Common

VHL-PHEO SDHB-PGL Germline mutations SDHD¹ found in 80% of RET **NF1** children *TMEM127* MAX

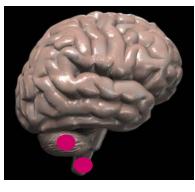
SDHC, SDHA, SDHAF2¹

Others*

¹Parent of origin effects; clinical disease not present in children of females

*FH, IDH1, HIF2A/EPAS1, PHD1 and PHD2, MDH2, KIF1β, MEN1

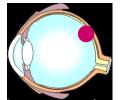
Dahia P Nature Reviews Cancer 2014; Neumann HP NEJM 2002; Neumann HP Endo Rel Cancer 2017, Pamporaki JCEM 2017


Making Cancer History*

THE UNIVERSITY OF TEXAS

Cancer Center

Von Hippel-Lindau Disease


CNS Hemangioblastoma 80%

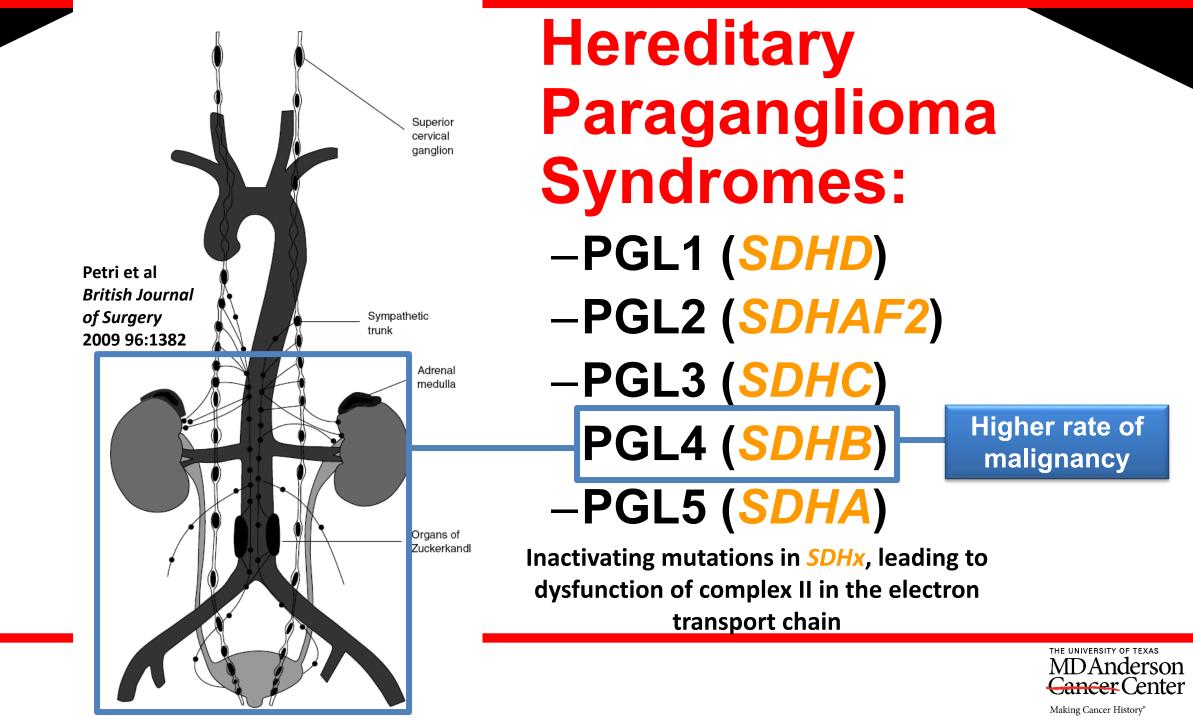
Pancreatic NET 11-17%

Retinal Hemangioblastoma 85%

Pheochromocytoma

20-30%

Renal Carcinoma 40+% Endolymphatic Sac Tumors 4%



Epididymal Cystadenoma 60% of males

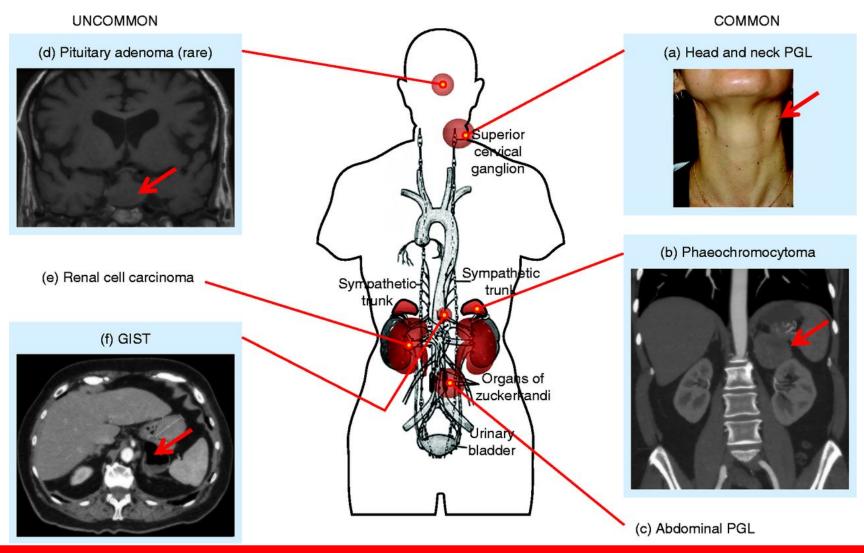
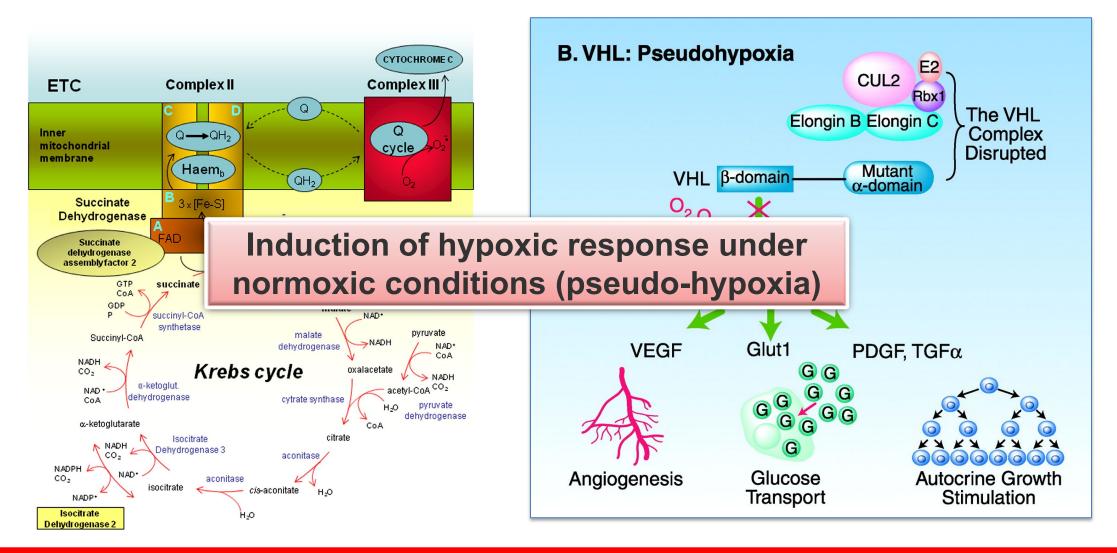
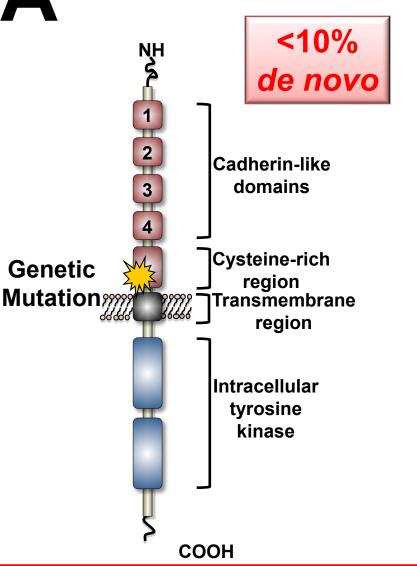


Figure Courtesy of Gilbert J. Cote, PhD


SDHx-associated Tumors

Benn DE et al., Endocr Relat Cancer. 2015

SDHx and VHL

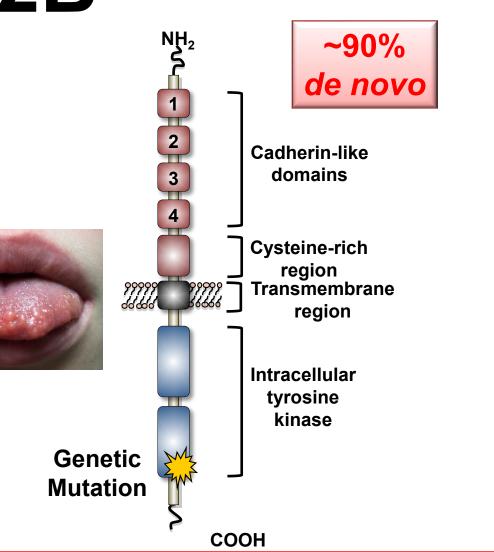

Bardella et al. Biochimica et Biophysica Acta 1807 (2011) 1432-1443

Bratslavsky et al. Clin Cancer Res 2007;4667 13(16)

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History^{*}

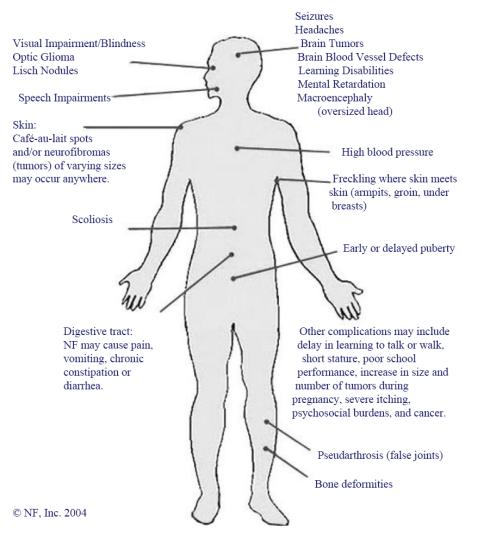
MEN2A

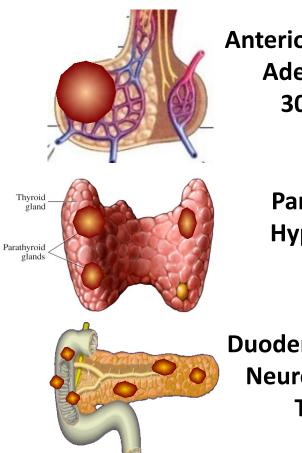
- Medullary Thyroid Carcinoma (MTC) (> 90%)
- Parathyroid Neoplasia (0-20%)
- Pheochromocytoma (0-50%)



RET tyrosine kinase receptor

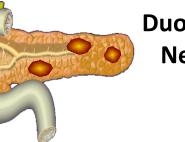
MEN2B


- Medullary Thyroid Carcinoma (MTC) (100%)
- MEN2B Phenotype (100%)
- Pheochromocytoma (~50%)



RET tyrosine kinase receptor

NF1



MEN1

Anterior Pituitary Adenomas 30-40%

> Parathyroid Hyperplasia > 97%

Duodenopancreatic Neuroendocrine Tumors 75%

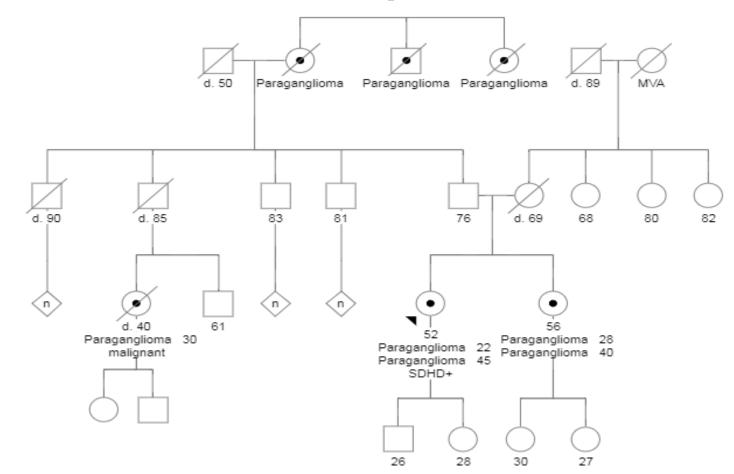
PHEO 2-6%; adult onset Screen pts with HTN

Very rare; adult onset Screen pts with HTN, adrenal mass

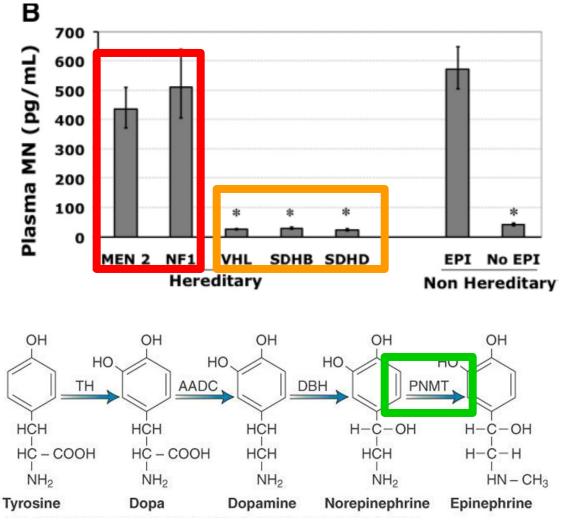
Other Genes Implicated in Hereditary PPGL

- TMEM127
- MAX
- FH
- HIF2A (aka EPAS1)¹
- PHD1 and PHD2 (aka EGLN2 and EGLN1)²
- **BAP1**
- KIF1β
- *MDH2*

- Incomplete penetrance of PPGL
 - Typically adult onset
 - Few cases published
- Screening guidelines not well established


¹Somatic mutations in cyanotic congenital heart disease

²Associated with polycythemia


Parent-of-Origin Effects in **SDHD** and **SDHAF2** (and possibly **MAX**)

Pedigree courtesy of Samuel Hyde, MMSc, CGC

Mutation & Tumor Phenotype

- VHL and SDHx tumors are noradrenergic (Cluster 1; pseudohypoxia)
- MEN, NF1, and sporadic tumors are *adrenergic* (Cluster 2; tyrosine kinase signaling)
- Difference in expression of
 PNMT

Hereditary PPGL Screening

Gene	Typical Age to Start	Testing
RET	11-16¹	Annual Metanephrines ²
SDHB	5	Annual Metanephrines ² Annual Catecholamines ³ Annual Chromogranin A Periodic Imaging ^{4,5}
VHL	5	Annual Metanephrines ² Periodic Imaging ^{4,6}

¹ Depends on the specific *RET* mutation; age 11 years for 634, 883 and 918, and age 16 years for others

² Plasma free metanephrines or urinary fractionated metanephrines

³ Consider 3-methoxytyramine if a dopamine secreting tumor is suspected

⁴ Avoid ionizing radiation for screening purposes

⁵ Abdominal/pelvis US in very young patients; Whole body MRI every 2 years in older patients

⁶ Abdominal US or MRI done in conjunction with imaging for other tumors

PHEOs Identified by Screening are Smaller and Less Symptomatic

Pheochromocytomas in the sporadic group were significantly larger compared with the hereditary group $(7.3 \pm 0.7 \text{ vs } 3.7 \pm 0.5 \text{ cm}, P < 0.01).$

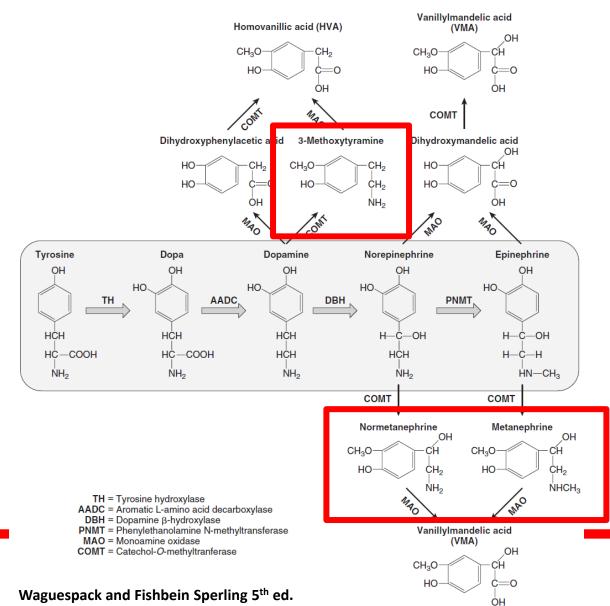
Table 3 Perioperative findings. Data are shown as mean (s.E.M.), unless otherwise mentioned.

	Pheochro	Pheochromocytomas		
Intraoperative events	Sporadic	Screening	<i>P</i> value	
Operation time <i>m</i> (min)	175±20	167±18	0.78	
LO.E.M. SAP > 160 mmHg Episodes <i>m</i> ⊥o.e.m.	21 (75%)	16 (50%)	0.03*	
Duration m±s.e.m. MAP<60 mmHg	50.3±10.7 16 (49%)	40.7±10.3 11 (34.4%)	0.54	
Episodes m±s.e.m. Duration m±s.e.m.	2.3±0.7 20.4±8.6	2.6±0.7 29.2±11.1	0.71 0.54	
Blood loss Median m (cc)	500	300		

SAP, systolic arterial pressure; MAP, mean arterial pressure; *Statistically significant.

Table 1 Clinical characteristics at the time of diagnosis of patients with sporadic pheochromocytomas versus patients with pheochromocytomas detected by screening. Data are shown as mean (s.E.M.), unless otherwise mentioned.

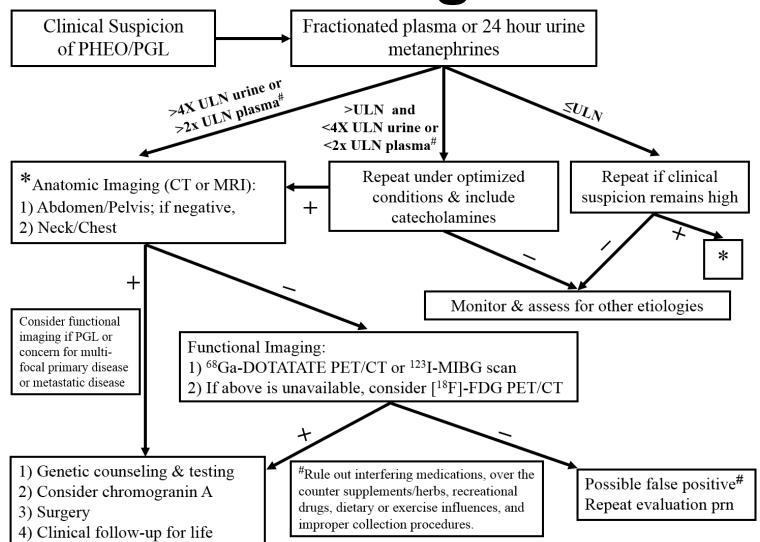
	Pheochro		
Characteristics	Sporadic	Screening	P value
Number of patients Gender (n (%))	28	32	
Males	14 (50%)	21 (66%)	0.22
Body mass index (kg/m ²)	24.5 ± 0.7	25.3 ± 0.7	0.44
Age (at diagnosis (years)) Symptoms (n (%))	47±3	41±2	0.07
Diaphoresis	21 (75%)	11 (34%)	< 0.01*
Palpitations	18 (64%)	9 (28%)	0.01*
Headache	16 (54%)	12 (38%)	0.01
Diap.+palp.+head.	11 (39%)	5 (16%)	0.04*
Dizziness	9 (32%)	9 (28%)	0.74
Pallor	12 (43%)	4 (13%)	0.01*
Nausea	12 (43%)	1 (3%)	< 0.01*
Vomiting	6 (21%)	0	< 0.01*
Flushes	2 (7%)	5 (16%)	0.43
Hypertension (>140/90 mmHa)	15 (54%)	11 (34%)	0.13
Type 2 diabetes mellitus (n (%))	5 (18%)	1 (3%)	0.01*
Systolic blood pressure (mmHg)	156.4±4.7	143.1±2.8	0.02*
Mean arterial pressure (mmHg)	116.0±3.5	106.8±2.0	0.03*
Diastolic blood pressure	95.7±3.4	88.6±1.9	0.07
Antihypertensive medication (n (%))	13 (46%)	4 (13%)	<0.01*


Diap., diaphoresis; Palp., palpitations; head, headache; *Statistically significant.

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

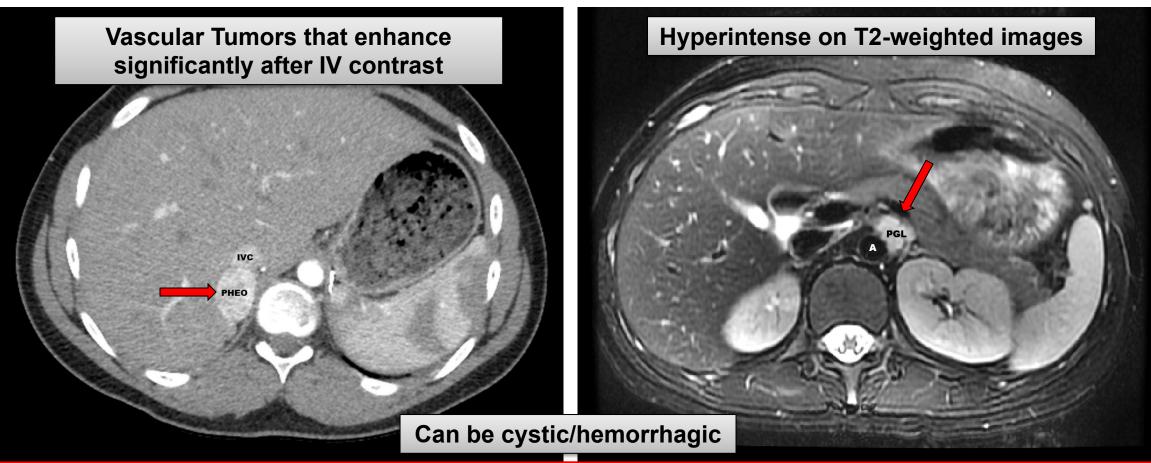
Making Cancer History

van Duinen et al. Screening and Pheochromocytomas Eur J Endocrinol. Vol 163, 121-27. Apr 2010.


PHEO/PGL-Diagnosis

Measurement of plasma and/or 24 urine fractionated <u>metanephrines</u> (metanephrines + normetanephrines)

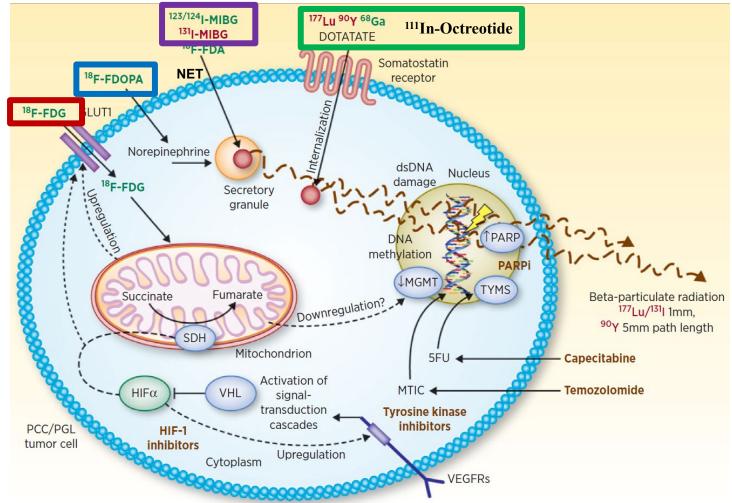
PPGL-Diagnosis



Anatomic Imaging for PHEO/PGL

MRI

СТ

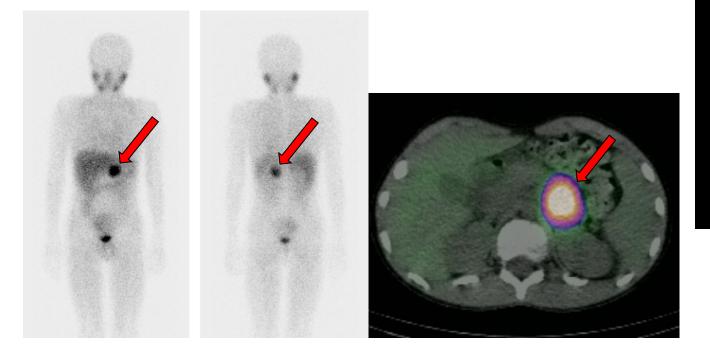

Waguespack and Fishbein, Sperling 5th ed

Functional Imaging for PPGL

- Scintigraphy

 -¹²³I-MIBG
 -¹¹¹In-Octreotide

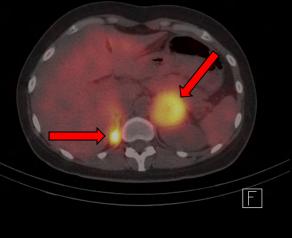
 PET
 - -¹⁸F-FDG -⁶⁸Ga-DOTATATE -¹⁸F-DOPA


© 2015 American Association for Cancer Research

Hofman and Hicks Clin Cancer Res 2015

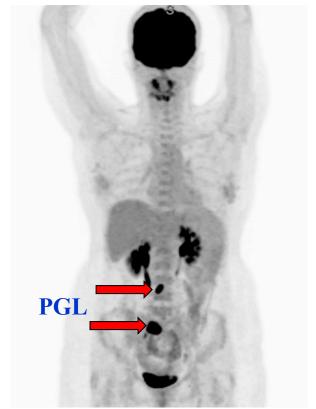
Functional Imaging for PHEO/PGL

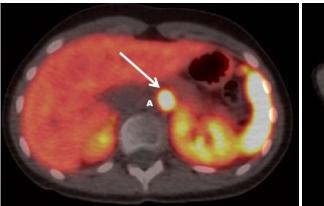
• ¹²³MIBG scan



Post contrast CT

MEN2a and Bilateral PHEOS


MIBG/CT



Functional Imaging for PHEO/PGL

¹⁸FDG PET/CT

• ⁶⁸Gallium Dotatate PET/CT

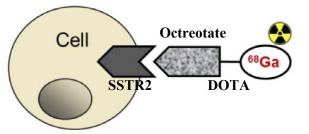
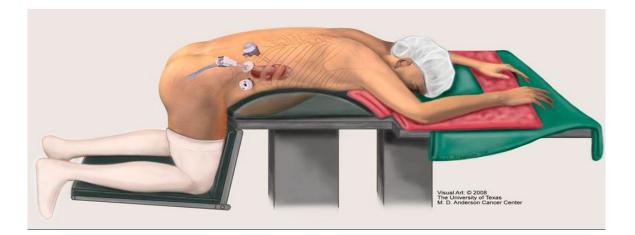
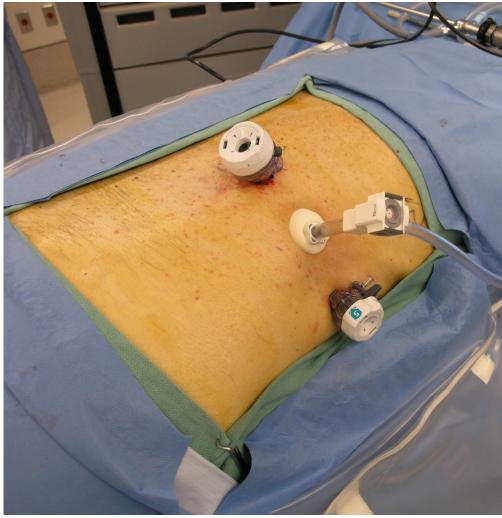


Figure Adapted from Velikyan Theranostics 2014

Waguespack and Fishbein, Sperling 5th ed., In press

PHEO/PGL- Pre-op Medical Management


TABLE 14-3 Preoperative Medical Management of Pheochromocytoma/Sympathetic Paraganglioma

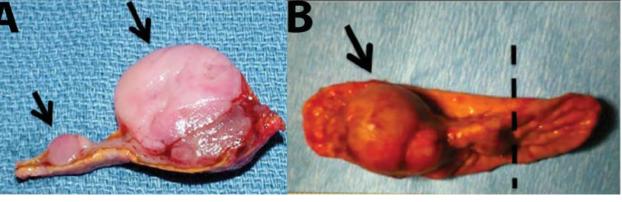

Drug Class	Drug	Mechanism of Action	Initial Pediatric Dose
α-adrenergic receptor blockers	Doxazosin Phenoxybenzamine Prazosin	α ₁ -antagonist α ₁ - and α ₂ -antagonist α ₁ -antagonist	0.5-1 mg daily 0.2-0.5 mg/kg/day divided BID (max 10 mg BID) 0.05-0.1 mg/kg/day divided TID (max 1 mg TID)
β-adrenergic receptor blockers	Atenolol Metoprolol Propranolol	β ₁ - antagonist β ₁ - antagonist β ₁ - and β ₂ -antagonist	0.5-1 mg/kg/dose daily (max 50 mg daily) 1-2 mg/kg/day divided BID (max 50 mg BID) 0.5-1 mg/kg/day divided BID (max 40 mg BID)
Calcium channel blockers	Nifedipine (sustained release)	Calcium channel blocker	0.25-0.5 mg/kg/day daily or BID (max 60 mg total daily dose)
Inhibitors of catecholamine synthesis	Metyrosine	Tyrosine hydroxylase inhibitor	125-250 mg divided BID-TID

Surgery

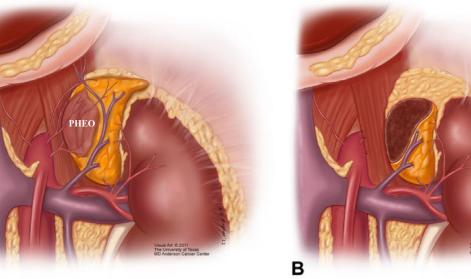
- Open Adrenalectomy
 - Large PHEOs
- Laparoscopic Adrenalectomy
 - Anterior transperitoneal
 - Posterior retroperitoneal

Calendar et al. *Adv Surg* 2009; Perrier et al. *Ann Surg* 2008;Schreinemakers et al. *Br J Surg* 2010; Benhammou et al. *J Urol* 2010

Cortical-Sparing Adrenalectomy

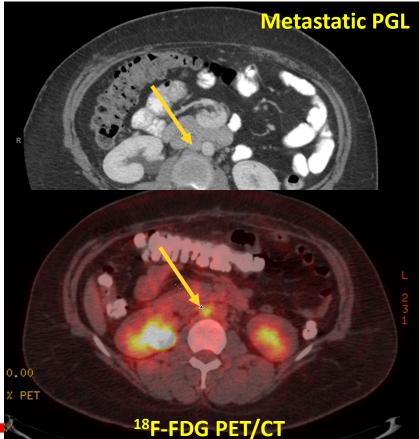

• In MEN1, MEN2, and VHL¹:

- 7% recurrence in corticalspared remnants
- steroid independence in 78% at 3 years
- In MEN2A²:
 - 3% recurrence
 - 57% steroid independence
- In MEN2B³:
 - 10% recurrence
 - 62% steroid independence


THE UNIVERSITY OF TEXAS

MDAnderson

Castinetti et al. Eur J Endocrinol 2016



Lifelong Follow Up Required

September 1996, age 15
 August 2012, age 31

Refractory HTN during pregnancy

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History[®]

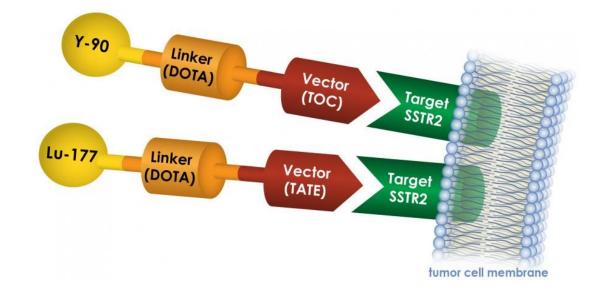
Metastatic PPGL

- No histological, biochemical, molecular, or genetic characteristics that predict malignant potential
- PGL>PHEO
- Sympathetic>Parasympathetic
- PPGL > 5cm; sympathetic PGL regardless of size
- SDHB+

Image courtesy of Dr. C. Jimenez

Chemotherapy

• Cyclophosphamide, vincristine, and dacarbazine (CVD)


· ·				Response		Effect of chemoth			Response
Dutcome	Studies	· · ·		in % (95% CI)	Outcome	Studies			in % (95% Cl)
complete response	4		Partia	Iroch	0000	in 27	0/	-	14 (6, 30)
artial response	4		ιαιτια	iicsp	UNIC		/0		40 (25, 57)
	4			14 (7, 27)	Stable disease	2		j	40 (25, 57) 20 (10, 36)
artial response	4				÷				

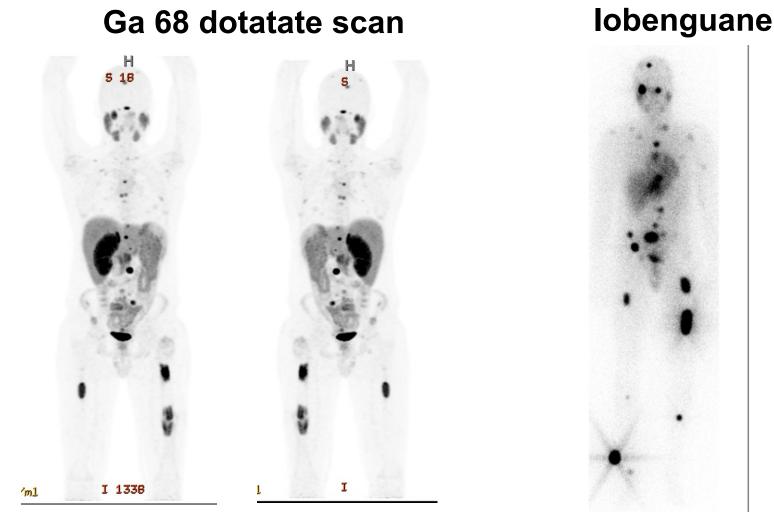
Theranostics

https://uihc.org/health-topics/what-theranostics

Radiopharmaceutical Options

I-131 MIBG (Azedra[®])

INDICATIONS AND USAGE.


AZEDRA is a radioactive therapeutic agent indicated for the treatment of adult and pediatric patients 12 years and older with iobenguane scan positive, unresectable, locally advanced or metastatic pheochromocytoma or paraganglioma who require systemic anticancer therapy. (1)

Lu-177 DOTATATE (Lutathera[®])

------ INDICATIONS AND USAGE------

LUTATHERA is a radiolabeled somatostatin analog indicated for the treatment of somatostatin receptor-positive gastroenteropancreatic neuroendocrine tumors (GEP-NETs), including foregut, midgut, and hindgut neuroendocrine tumors in adults. (1)

Iobenguane I131 scan

High-Specific-Activity ¹³¹I-MIBG

AZEDRA was proven to reduce the need for antihypertensive medication

Primary endpoint¹

Reduction or discontinuation of antihypertensive medication by at least 50% for at least six months 25% of patients treated with AZEDRA achieved the primary endpoint (n=17/68, 95% CI: 16-37%)

AZEDRA was shown to reduce the size of tumors

Overall tumor
response, asses
radiographicall
per RECIST 1.0

www.Azedra.com

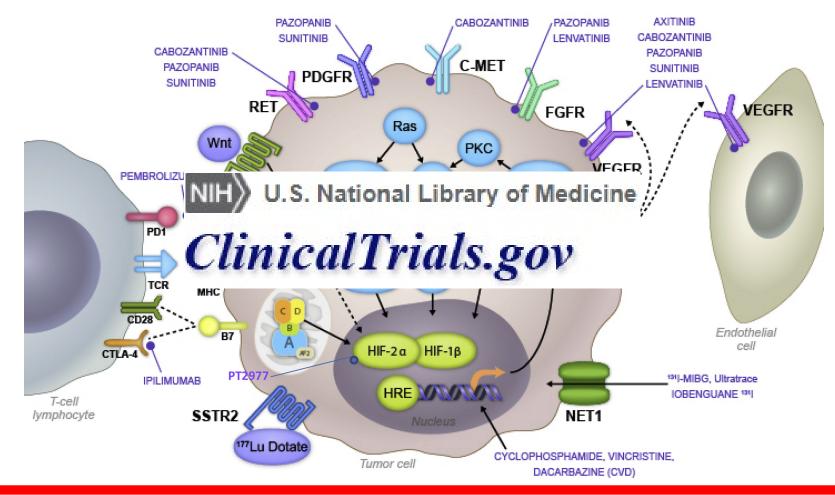
all tumor inse, assessed graphically ECIST 1.0 22% of patients treated with AZEDRA achieved a partial response (n=15/68, 95% CI: 14–33%)

Secondary endpoint¹

53% of responders experienced durable tumor responses lasting 6 months or longer

N=68; median age 55 yr (16-76; 1<age 18)

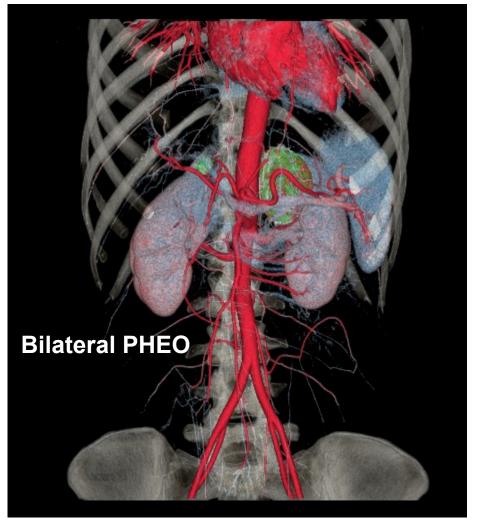
AE by preferred term	Treatment-related AE, all grades	Treatment-related AE, grades 3-5	Any AE, all grades
Nausea	52 (76)	1 (1)	53 (78)
Thrombocytopenia	49 (72)	28 (41)	49 (72)
Anemia	40 (59)	14 (21)	43 (63)
Leukopenia	41 (60)	28 (41)	41 (60)
Fatigue	32 (47)	7 (10)	41 (60)
Neutropenia	39 (57)	26 (38)	39 (57)
Vomiting	33 (49)	1 (1)	36 (53)
Dry mouth	27 (40)	0	28 (41)
Dizziness	16 (24)	1 (1)	27 (40)
Headache	15 (22)	0	21 (31)
Hypotension	8 (12)	1 (1)	18 (26)
Decreased appetite	14 (21)	1 (1)	17 (25)
Diarrhea	11 (16)	2 (3)	16 (24)
Constipation	4 (6)	1 (1)	16 (24)


Data are numbers followed by percentages in parentheses.

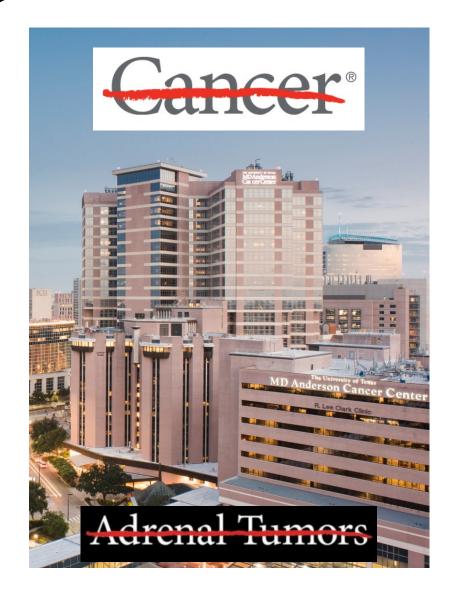
Grade 1 = mild AE; grade 2 = moderate AE; grade 3 = severe AE; grade 4 = life-threatening or disabling AE; grade 5 = death related to AE.

Pryma et al. J Nucl Med. 2019 May;60(5):623-630

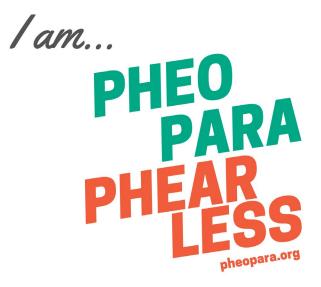
Systemic approaches to metastatic PPGL



Jasim and Jimenez Best Practice & Research Clinical Endocrinology & Metabolism 34 (2020)


THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History^{*}

Summary


- Pediatric PPGL are rare tumors that account for up to 2% of children with hypertension
- PPGL of childhood onset are more likely to be hereditary (cluster 1), noradrenergic, and multifocal/bilateral
- The major genetic syndromes in childhood are VHL and the familial paraganglioma syndromes (SDHx mutations)
- Malignancy risk is high (primarily due to SDHB mutations) and lifelong FU required for metachronous and metastatic disease
- Prospective screening typically incorporates labs and imaging (MRI); recommendations are primarily based on expert opinion

Thank You!

