Pediatric Pheochromocytoma/Paraganglioma (PPGL)

Steven G. Waguespack, MD
Professor

Dept. of Endocrine Neoplasia and Hormonal Disorders
Department of Pediatrics-Patient Care
Disclosures:

None
Objectives

• Discuss the clinical presentation of PPGL in children, including the most common hereditary syndromes
• Highlight differences between children and adults with PPGL
• Discuss the diagnosis and treatment of pediatric PPGL, including metastatic disease
Chromaffin Cell Tumors*

*PHEO and sympathetic/functional PGL arise from chromaffin cells; parasympathetic or non-functional PGL are known as non-chromaffin paragangliomas
Parasympathetic PGLs

- Historically called “glomus tumors” or “chemodectomas”
- 1-3% functional
- Anatomic tumor locations
 - Glomus tympanicum/jugulare or jugulotympanic
 - middle ear mass, tinnitus, hearing loss
 - Vagal
 - neck mass, dysphagia, hoarseness
 - Carotid body
 - neck mass, cranial nerve palsy
 - Aortopulmonary body
 - none, unless large enough to cause pain or shortness of breath
Parasympathetic PGLs

Glomus tympanicum (middle ear PGL)

Glomus caroticum (carotid body PGL)
Sympathetic PGLs

- Most hypersecrete catecholamines
- Posterior mediastinum and abdomen/pelvis
 - Organs of Zuckerkandl
PPGL in Children

- Very rare--Incidence of 2/million/year
- 0.8-1.7% of hypertensive children
- 13% of all PPGL with childhood presentation
- Average age of diagnosis 13 years
- Extra-adrenal (up to 60%) & bilateral (10-25%)
- Up to 80% hereditary
- More likely to be metastatic (esp. PGL)

PPGL: Children vs Adults

Table 1. Demographic and Tumor Characteristics of Pediatric and Adult Patients With PPGLs

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pediatric</th>
<th>Adult</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 95</td>
<td>N = 653</td>
<td></td>
</tr>
<tr>
<td>Age at initial diagnosis<sup>a</sup></td>
<td>13.3 ± 3.5</td>
<td>44.7 ± 14.4</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>55.8% (53/95)</td>
<td>48.1% (314/653)</td>
<td>0.0980</td>
</tr>
<tr>
<td>Primary tumor locations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solitary adrenal</td>
<td>22.1% (21/95)</td>
<td>56.2% (367/653)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Solitary extra-adrenal</td>
<td>33.7% (32/95)</td>
<td>21.6% (141/653)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bilateral adrenal</td>
<td>11.6% (11/95)</td>
<td>8.7% (57/653)</td>
<td>0.2020</td>
</tr>
<tr>
<td>Multifocal<sup>b</sup></td>
<td>32.6% (31/95)</td>
<td>13.5% (88/653)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hereditary cases<sup>c</sup></td>
<td>80.4% (74/92)</td>
<td>52.6% (273/519)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Recurrent primary tumors<sup>d</sup></td>
<td>29.5% (28/95)</td>
<td>14.2% (93/653)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Metastatic disease</td>
<td>49.5% (47/95)</td>
<td>29.1% (190/653)</td>
<td><0.0001</td>
</tr>
<tr>
<td>No. N/D phenotype</td>
<td>93.2% (68/73)</td>
<td>57.3% (337/588)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Abbreviations: N/D, noradrenergic/dopaminergic.

^a Age is shown as mean ± standard deviation.

^b Multifocal locations indicate multiple extra-adrenal tumors or extra-adrenal and adrenal tumors but exclude bilateral adrenal tumors unless accompanied by one or more extra-adrenal tumors.

^c Results were retrieved from 611 patients who underwent genetic testing.

^d Recurrent primary tumors are defined as recurrences at an original site of tumor resection as well as new primary tumors at other locations a year or more after diagnosis of the first primary tumor.

PPGL in Children—Clinical Presentation

- 70-90% present with HTN, usually sustained (up to 2% of hypertensive children)
- Sweating, visual problems, weight loss, nausea/vomiting, and polyuria/polydipsia
- Decreased school performance & behavioral problems
- Classic triad (paroxysmal sweating, HA, palpitations) uncommon
- Symptoms less common in inherited tumors
PHEO/PGL—Signs & Symptoms

TABLE 1. Pheochromocytoma: Clinical findings according to age

<table>
<thead>
<tr>
<th></th>
<th><20</th>
<th>>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustained</td>
<td>93%</td>
<td>68%</td>
</tr>
<tr>
<td>Without paroxysms</td>
<td>63%</td>
<td>58%</td>
</tr>
<tr>
<td>With paroxysms</td>
<td>37%</td>
<td>42%</td>
</tr>
<tr>
<td>Paroxysmal</td>
<td>7%</td>
<td>26%</td>
</tr>
<tr>
<td>Normotension</td>
<td>0</td>
<td>5%</td>
</tr>
<tr>
<td>Other symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>95%</td>
<td>90%</td>
</tr>
<tr>
<td>Sweating</td>
<td>90%</td>
<td>92%</td>
</tr>
<tr>
<td>Visual disturbances</td>
<td>80%</td>
<td>47%</td>
</tr>
<tr>
<td>Neurologic signs</td>
<td>65%</td>
<td>57%</td>
</tr>
<tr>
<td>Tachycardia, dysrhythmias</td>
<td>35%</td>
<td>72%</td>
</tr>
<tr>
<td>Weight loss</td>
<td>15%</td>
<td>72%</td>
</tr>
</tbody>
</table>
Pediatric PPGL

Most Common

VHL - PHEO
SDHB - PGL
SDHD
RET
NF1
TMEM127
MAX
SDHC, SDHA, SDHAF2

Germline mutations found in 80% of children

Least Common

Others*

*FH, IDH1, HIF2A/EPAS1, PHD1 and PHD2, MDH2, KIF1β, MEN1

Parent of origin effects; clinical disease not present in children of females

Dahia P Nature Reviews Cancer 2014; Neumann HP NEJM 2002; Neumann HP Endo Rel Cancer 2017, Pamporaki JCEM 2017
CNS Hemangioblastoma
80%

Retinal Hemangioblastoma
85%

Pheochromocytoma
20-30%

Renal Carcinoma
40+%

Pancreatic NET
11-17%

Endolymphatic Sac Tumors
4%

Epididymal Cystadenoma
60% of males

Figure Courtesy of Gilbert J. Cote, PhD
Inactivating mutations in $SDHx$, leading to dysfunction of complex II in the electron transport chain

Hereditary Paraganglioma Syndromes:

- PGL1 ($SDHD$)
- PGL2 ($SDHAF2$)
- PGL3 ($SDHC$)
- PGL4 ($SDHB$)
- PGL5 ($SDHA$)

Higher rate of malignancy

Petri et al
British Journal of Surgery
2009 96:1382
SDHx-associated Tumors

UNCOMMON
- (d) Pituitary adenoma (rare)
- (e) Renal cell carcinoma
- (f) GIST

COMMON
- (a) Head and neck PGL
- (b) Phaeochromocytoma
- (c) Abdominal PGL

Benn DE et al., *Endocr Relat Cancer*. 2015
SDHx and VHL

B. VHL: Pseudohypoxia

The VHL Complex Disrupted

Induction of hypoxic response under normoxic conditions (pseudo-hypoxia)

- VEGF
- Glut1
- PDGF, TGFα

Angiogenesis
Glucose Transport
Autocrine Growth Stimulation

References

Bardella et al. *Biochimica et Biophysica Acta* 1807 (2011) 1432–1443

Bratslavsky et al. *Clin Cancer Res* 2007;4667 13(16)
MEN2A

- Medullary Thyroid Carcinoma (MTC) (> 90%)
- Parathyroid Neoplasia (0-20%)
- Pheochromocytoma (0-50%)

RET Figure adapted from Waguespack et al. Nat Rev Endocrinol. 2011 Aug 23;7(10):596-607

RET tyrosine kinase receptor
MEN2B

- Medullary Thyroid Carcinoma (MTC) (100%)
- MEN2B Phenotype (100%)
- Pheochromocytoma (~50%)

RET Figure adapted from Waguespack et al. Nat Rev Endocrinol. 2011 Aug 23;7(10):596-607
NF1

- Visual Impairment/Blindness
- Optic Gliomas
- Lisch Nodules
- Speech Impairments

Skin:
- Café-au-lait spots and/or neurofibromas (tumors) of varying sizes may occur anywhere.
- Scoliosis

Digestive tract:
- NF may cause pain, vomiting, chronic constipation or diarrhea.

Seizures
Headaches
Brain Tumors
Bone Blood Vessel Defects
Learning Disabilities
Mental Retardation
Microencephaly (oversized head)

High blood pressure
Freckling where skin meets skin (armpits, groin, under breasts)
Early or delayed puberty

Other complications may include delay in learning to talk or walk; short stature, poor school performance, increase in size and number of tumors during pregnancy; severe itching, psychosocial burdens, and cancer.

Pseudarthrosis (false joints)
Bone deformities

© NF, Inc. 2004

MEN1

Anterior Pituitary Adenomas
- 30-40%

Parathyroid Hyperplasia
- > 97%

Duodenopancreatic Neuroendocrine Tumors
- 75%

PHEO 2-6%; adult onset
- Screen pts with HTN

Very rare; adult onset
- Screen pts with HTN, adrenal mass
Other Genes Implicated in Hereditary PPGL

- **TMEM127**
- **MAX**
- **FH**
- **HIF2A** (aka EPAS1)
- **PHD1** and **PHD2** (aka EGLN2 and EGLN1)
- **BAP1**
- **KIF1β**
- **MDH2**

- Incomplete penetrance of PPGL
 - Typically adult onset
 - Few cases published
 - Screening guidelines not well established

1. Somatic mutations in cyanotic congenital heart disease
2. Associated with polycythemia

Muth J Intern Med 2019; Neumann Endocrine Related Cancer 2018; Eisenhofer Clin Biochem Rev 2017
Parent-of-Origin Effects in **SDHD** and **SDHAF2** (and possibly **MAX**)

Pedigree courtesy of Samuel Hyde, MMSc, CGC
VHL and SDHx tumors are noradrenergic (Cluster 1; pseudohypoxia)

MEN, NF1, and sporadic tumors are adrenergic (Cluster 2; tyrosine kinase signaling)

Difference in expression of PNMT

Hereditary PPGL Screening

<table>
<thead>
<tr>
<th>Gene</th>
<th>Typical Age to Start</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>RET</td>
<td>11-16(^1)</td>
<td>Annual Metanephrines(^2)</td>
</tr>
<tr>
<td>SDHB</td>
<td>5</td>
<td>Annual Metanephrines(^2), Annual Catecholamines(^3), Annual Chromogranin A Periodic Imaging(^4,5)</td>
</tr>
<tr>
<td>VHL</td>
<td>5</td>
<td>Annual Metanephrines(^2), Periodic Imaging(^4,6)</td>
</tr>
</tbody>
</table>

\(^1\) Depends on the specific RET mutation; age 11 years for 634, 883 and 918, and age 16 years for others

\(^2\) Plasma free metanephrines or urinary fractionated metanephrines

\(^3\) Consider 3-methoxytyramine if a dopamine secreting tumor is suspected

\(^4\) Avoid ionizing radiation for screening purposes

\(^5\) Abdominal/pelvis US in very young patients; Whole body MRI every 2 years in older patients

\(^6\) Abdominal US or MRI done in conjunction with imaging for other tumors

PHEOs Identified by Screening are Smaller and Less Symptomatic

PHEO/PGL- Diagnosis

Measurement of plasma and/or 24 urine fractionated metanephrines (metanephrines + normetanephrines)

Waguespack and Fishbein Sperling 5th ed.
PPGL- Diagnosis

Clinical Suspicion of PHEO/PGL → Fractionated plasma or 24 hour urine metanephrines

- >4X ULN urine or >2x ULN plasma
- >ULN and <4X ULN urine or <2x ULN plasma
- ≤ULN

* Anatomic Imaging (CT or MRI):
 1) Abdomen/Pelvis; if negative,
 2) Neck/Chest

Repeat under optimized conditions & include catecholamines

Repeat if clinical suspicion remains high

Monitor & assess for other etiologies

Consider functional imaging if PGL or concern for multifocal primary disease or metastatic disease

Functional Imaging:
1) 68Ga-DOTATATE PET/CT or 123I-MIBG scan
2) If above is unavailable, consider [18F]-FDG PET/CT

1) Genetic counseling & testing
2) Consider chromogranin A
3) Surgery
4) Clinical follow-up for life

#Rule out interfering medications, over the counter supplements/herbs, recreational drugs, dietary or exercise influences, and improper collection procedures.

Possible false positive

Repea evaluation prn

Waguespack and Fishbein, Sperling 5th ed.
Anatomic Imaging for PHEO/PGL

CT

Vascular Tumors that enhance significantly after IV contrast

MRI

Hyperintense on T2-weighted images

Can be cystic/hemorrhagic

Waguespack and Fishbein, Sperling 5th ed
Functional Imaging for PPGL

- **Scintigrapy**
 - 123I-MIBG
 - 111In-Octreotide

- **PET**
 - 18F-FDG
 - 68Ga-DOTATATE
 - 18F-DOPA

Hofman and Hicks *Clin Cancer Res* 2015
Functional Imaging for PHEO/PGL

- 123MIBG scan

MEN2a and Bilateral PHEOS
Functional Imaging for PHEO/PGL

- 18FDG PET/CT
- 68Gallium Dotatate PET/CT

Figure Adapted from Velikyan, Theranostics 2014

Waguespack and Fishbein, Sperling 5th ed., In press
PHEO/PGL - Pre-op Medical Management

TABLE 14-3 Preoperative Medical Management of Pheochromocytoma/Sympathetic Paraganglioma

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Drug</th>
<th>Mechanism of Action</th>
<th>Initial Pediatric Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-adrenergic receptor blockers</td>
<td>Doxazosin</td>
<td>α₁-antagonist</td>
<td>0.5-1 mg daily</td>
</tr>
<tr>
<td></td>
<td>Phenoxybenzamine</td>
<td>α₁- and α₂-antagonist</td>
<td>0.2-0.5 mg/kg/day divided BID (max 10 mg BID)</td>
</tr>
<tr>
<td></td>
<td>Prazosin</td>
<td>α₁-antagonist</td>
<td>0.05-0.1 mg/kg/day divided TID (max 1 mg TID)</td>
</tr>
<tr>
<td>β-adrenergic receptor blockers</td>
<td>Atenolol</td>
<td>β₁-antagonist</td>
<td>0.5-1 mg/kg/dose daily (max 50 mg daily)</td>
</tr>
<tr>
<td></td>
<td>Metoprolol</td>
<td>β₁-antagonist</td>
<td>1-2 mg/kg/day divided BID (max 50 mg BID)</td>
</tr>
<tr>
<td></td>
<td>Propranolol</td>
<td>β₁- and β₂-antagonist</td>
<td>0.5-1 mg/kg/day divided BID (max 40 mg BID)</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>Nifedipine (sustained release)</td>
<td>Calcium channel blocker</td>
<td>0.25-0.5 mg/kg/day or BID (max 60 mg total daily dose)</td>
</tr>
<tr>
<td>Inhibitors of catecholamine synthesis</td>
<td>Metyrosine</td>
<td>Tyrosine hydroxylase inhibitor</td>
<td>125-250 mg divided BID-TID</td>
</tr>
</tbody>
</table>

Surgery

- Open Adrenalectomy
 - Large PHEOs
- Laparoscopic Adrenalectomy
 - Anterior transperitoneal
 - Posterior retroperitoneal

Cortical-Sparing Adrenalectomy

- In MEN1, MEN2, and VHL\(^1\):
 - 7% recurrence in cortical-spared remnants
 - steroid independence in 78% at 3 years

- In MEN2A\(^2\):
 - 3% recurrence
 - 57% steroid independence

- In MEN2B\(^3\):
 - 10% recurrence
 - 62% steroid independence

Lifelong Follow Up Required

- September 1996, age 15
- August 2012, age 31

Refractory HTN during pregnancy

![Imaging of PGL and 18F-FDG PET/CT](image)
Metastatic PPGL

• No histological, biochemical, molecular, or genetic characteristics that predict malignant potential
• PGL>PHEO
• Sympathetic>Parasympathetic
• PPGL > 5cm; sympathetic PGL regardless of size
• SDHB+

Dahia et al. Endocr Relat Cancer. 2020 Aug;27(8)
Chemotherapy

- Cyclophosphamide, vincristine, and dacarbazine (CVD)

Theranostics

https://uihc.org/health-topics/what-theranostics
Radiopharmaceutical Options

- I-131 MIBG (Azedra®)

- Lu-177 DOTATATE (Lutathera®)
Ga 68 dotatate scan

Iobenguane I131 scan
High-Specific-Activity 131I-MIBG

AZEDRA was proven to reduce the need for antihypertensive medication

- **Primary endpoint**
 - Reduction or discontinuation of antihypertensive medication by at least 50% for at least six months
 - 25% of patients treated with AZEDRA achieved the primary endpoint (n=17/68, 95% CI: 16–37%)

AZEDRA was shown to reduce the size of tumors

- **Secondary endpoint**
 - Overall tumor response, assessed radiographically per RECIST 1.0
 - 22% of patients treated with AZEDRA achieved a partial response (n=15/68, 95% CI: 14–33%)
 - 53% of responders experienced durable tumor responses lasting 6 months or longer

N=68; median age 55 yr (16-76; 1<age 18)

<table>
<thead>
<tr>
<th>AE by preferred term</th>
<th>Treatment-related AE, all grades</th>
<th>Treatment-related AE, grades 3-5</th>
<th>Any AE, all grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>52 (78)</td>
<td>1 (1)</td>
<td>53 (78)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>49 (72)</td>
<td>28 (41)</td>
<td>49 (72)</td>
</tr>
<tr>
<td>Anemia</td>
<td>40 (60)</td>
<td>14 (21)</td>
<td>43 (62)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>41 (60)</td>
<td>28 (41)</td>
<td>41 (60)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>32 (47)</td>
<td>7 (10)</td>
<td>41 (60)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>39 (57)</td>
<td>26 (38)</td>
<td>39 (57)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>33 (49)</td>
<td>1 (1)</td>
<td>36 (53)</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>27 (40)</td>
<td>0</td>
<td>28 (41)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>16 (24)</td>
<td>1 (1)</td>
<td>27 (40)</td>
</tr>
<tr>
<td>Headache</td>
<td>15 (22)</td>
<td>0</td>
<td>21 (31)</td>
</tr>
<tr>
<td>Hypotension</td>
<td>8 (12)</td>
<td>1 (1)</td>
<td>18 (26)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>14 (21)</td>
<td>1 (1)</td>
<td>17 (25)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>11 (16)</td>
<td>2 (3)</td>
<td>16 (24)</td>
</tr>
<tr>
<td>Constipation</td>
<td>4 (6)</td>
<td>1 (1)</td>
<td>16 (24)</td>
</tr>
</tbody>
</table>

Data are numbers followed by percentages in parentheses.

- Grade 1 = mild AE; grade 2 = moderate AE; grade 3 = severe AE; grade 4 = life-threatening or disabling AE; grade 5 = death related to AE.

Source:

Systemic approaches to metastatic PPGL

Jasim and Jimenez Best Practice & Research Clinical Endocrinology & Metabolism 34 (2020)
Summary

• Pediatric PPGL are rare tumors that account for up to 2% of children with hypertension
• PPGL of childhood onset are more likely to be hereditary (cluster 1), noradrenergic, and multifocal/bilateral
• The major genetic syndromes in childhood are VHL and the familial paraganglioma syndromes (SDHx mutations)
• Malignancy risk is high (primarily due to SDHB mutations) and lifelong FU required for metachronous and metastatic disease
• Prospective screening typically incorporates labs and imaging (MRI); recommendations are primarily based on expert opinion
Thank You!

I am...

PHEO PARA
PHEAR LESS

pheopara.org