PPGL research update

A/Prof Roderick Clifton-Bligh

Kolling Institute of Medical Research, University of Sydney

Department of Endocrinology
Royal North Shore Hospital, St Leonards, NSW

Pheo-Para Alliance 11th August 2020
Disclosures

- Speaker fees from Eisai, Bayer, Amgen, Novo Nordisk, Ipsen

- Ad boards: Eisai, Amgen, Ipsen
Overview: research agenda

1. To determine **drivers** of pheo development

2. To develop new **targeted** therapies

3. To **prevent** metastatic PPGL (identify PPGL early)
Agenda #1: Determining **drivers** of pheo development

1. Genetic information
 - Hypoxia-inducible factors
 - Telomeres

2. Metabolomics
Pheo-Para genes classify in 3 clusters

- Most of these genes are ‘tumor suppressors’ (e.g. SDHB)
- A few however are ‘oncogenes’
 - it is easier to develop inhibitor therapies against these

<table>
<thead>
<tr>
<th>Cluster 1 “pseudo-hypoxia”</th>
<th>Cluster 2 “kinase”</th>
<th>Cluster 3 (or 2B) “Wnt altered”</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHL</td>
<td>RET</td>
<td>MAML3</td>
</tr>
<tr>
<td>EPAS1</td>
<td>NF1</td>
<td>CSDE1</td>
</tr>
<tr>
<td>PHD1</td>
<td>TMEM127</td>
<td>TP53</td>
</tr>
<tr>
<td>IRP</td>
<td>MAX</td>
<td></td>
</tr>
<tr>
<td>SDHD</td>
<td>KIF1B</td>
<td></td>
</tr>
<tr>
<td>SDHB</td>
<td>HRAS</td>
<td></td>
</tr>
<tr>
<td>SDHC</td>
<td>MET</td>
<td></td>
</tr>
<tr>
<td>SDHA</td>
<td>MERTK</td>
<td></td>
</tr>
<tr>
<td>SDHAF2</td>
<td>DNMT3A</td>
<td></td>
</tr>
<tr>
<td>FH</td>
<td>FGFR1</td>
<td></td>
</tr>
<tr>
<td>MDH2</td>
<td>BRAF</td>
<td></td>
</tr>
<tr>
<td>SLC25A11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDH1, 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fishbein et al Cancer Cell 2017;31:181-193
Nobel Prize in Physiology/Medicine 2019

“for their discoveries of how cells sense and adapt to oxygen availability”
Hypoxia Inducible Factors (HIFs)

NORMOXIA

HYPOXIA

HIF

Ubiquitinated and degraded

Hypoxia-response gene (e.g. VEGF)

Hypoxia
EPAS1

- Encodes HIF2α
- First associated with PGL in 2012
- Mutations occur ~5-10% of pheos

EPAS1 (HIF2) is overexpressed in Cluster 1 PPGLs

Even when *EPAS1* gene is not mutated, it is often overexpressed in pheos.

Qin et al Int J Cancer 2014;135:2054-2064
HIF2α inhibitors

- PT2385 in phase 1 trial for renal cancer:
 - Prolonged response in one pt

Pheo-Para gene clusters

Cluster 1
- **“pseudo-hypoxia”**
- VHL
- EPAS1
- PHD1
- IRP
- SDHD
- SDHC
- SDHA
- SDHAF2
- FH
- MDH2
- SLC25A11
- GOT2
- IDH1, 2

Cluster 2
- **“kinase”**
- RET
- NF1
- TMEM127
- MAX
- KIF1B
- MET

Cluster 3
- **(or 2B) “Wnt altered”**
- MAML3
- CSDE1
- TP53
- HRAS
- MET
- DNMT3A
- BRAF

SDHB accounts for approximately 10% of all PPGL. However, about 40% of metastatic cases involve SDHB.

SDHB alone is not sufficient for progression

Sporadic

- Age: 35, 40, 45, 50

Hamidi et al. JCEM 2017;102:3296–3305
Hescot et al. JCEM 2019; 10.1210/jc.2018-01968
Crona et al. ERC 2019; pii ERC-19-0024.R2
American Australian Asian Adrenal Alliance (A5)
A5 SDHB Genomics Study

Project Leads
Dr Richard Tothill
University of Melbourne
A/Prof Roderick Clifton-Bligh
Kolling Institute
Prof Karel Pacak
National Institute of Health

Co-Investigators
Dr Tobias Else
University of Michigan, Ann Arbor, MI, USA
Dr Lauren Fishbein
University of Colorado, CO, USA
Prof Anthony Gill
Royal North Shore Hospital/University of Sydney, Australia
Prof Arthur Tischler
Tufts Medical Centre, Boston, MA, USA
Dr Thomas Giordano
University of Michigan, Ann Arbor, MI, USA
A/Prof Patricia Dahia
University of Texas Health Science Center at San Antonio (UTHSCSA), TX, USA
Dr Hans Kumar Ghayee
University of Florida, FL, USA
Dr Isabelle Bourdeau
Centre hospitalier de l'université de Montréal, Montreal, Canada
Dr Marianne Elston
University of Auckland, Auckland, New Zealand
Dr Joanne Ngeow Yuen Yie
National Cancer Centre, Singapore
Dr Trisha Dwight
Kolling Institute/University of Sydney, Sydney, Australia
Dr Dindy Benn
Kolling Institute/University of Sydney, Sydney, Australia
Prof Rod Hicks
Peter MacCallum Cancer Centre, Melbourne, Australia
Dr Joakim Crona
Uppsala University, Sweden
Dr Peter Stålberg
Uppsala University, Sweden
Prof Sean Grimmond
University of Melbourne
A/Prof Oliver Hofmann
University of Melbourne

A5 Chairs: Gary Hammer and Tobias Else
University of Michigan
Telomere maintenance

- **Telomerase**: enzyme that adds telomeric repeats (TTAGGG) to the 3’ end of chromosomes

- In PPGLs associated with *SDHB*:
 - TERT promoter activation or chromosomal translocation in ~20%
 - alternative lengthening of telomeres (ALT) in ~5%
 - Strong association with metastatic disease

Tothill et al, in preparation
Why are telomere maintenance mechanisms activated by *SDHB* mutations?

- **HIF stabilization**
 - succinate to fumarate
 - Electron transport chain
 - reactive oxygen species
 - SDHA, SDHB, SDHC, SDHD
Connecting SDHB with telomeres

- Understanding **how** *SDHB* is linked to telomere maintenance will identify **targeted** approaches for new treatments
Connecting SDHB with telomeres

- Understanding how $SDHB$ is linked to telomere maintenance will identify targeted approaches for new treatments.
Not just succinate: extending the metabolomic signature of SDHB pheos

- Increase in polyamines
- Blocking these with DENSPM reduced cell growth in vitro and in xenografted mice

Rai et al. Metabolism 2020;110:154297
Agenda #2: Developing **new targeted therapies**

- Slow progress due to:
 - lack of preclinical models
 - Heterogeneity of disease
 - Scarcity
Existing therapies

<table>
<thead>
<tr>
<th>Radionuclides</th>
<th>Complete/partial response</th>
<th>Stable disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horm</td>
<td>Tumor</td>
</tr>
<tr>
<td>131-MIBG</td>
<td>51%</td>
<td>30%</td>
</tr>
<tr>
<td>HSA-MIBG</td>
<td>25%</td>
<td>23%</td>
</tr>
<tr>
<td>Lutathera</td>
<td>57%</td>
<td>29%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemotherapy</th>
<th>Complete/partial response</th>
<th>Stable disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horm</td>
<td>Tumor</td>
</tr>
<tr>
<td>CVD</td>
<td>54%</td>
<td>41%</td>
</tr>
<tr>
<td>TMZ</td>
<td>-</td>
<td>36%</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*not FDA approved

- Most studies retrospective
- **Gene dependent** response to therapy
 - Tailor therapy for *SDHB* patients

References:
- Van Hulsteijn et al Clin Endocrinol 2014;80:487-501
- Niejmeyer et al Clin Endocrinol 2014;81:642-651
- Hadoux et al Int J Cancer 2014;135:2711-2720
- Kong et al JCEM 2017;102:3278-3287
- Fishbein et al Endocr Relat Cancer 2017;24:L51-L55
- Jawed et al Cell Mol Neurobiol 2018;38:1099-1106
- Asai et al Horm Cancer 2017;8:108-118
- Hadoux et al Int J Cancer 2014;135:2711-20
Phaeochromocytoma vs paraganglioma

Phaeochromocytoma

Thoracoabdominal paraganglioma

Head and neck paraganglioma

PGL of organ of Zuckerkandl
Peptide receptor radionuclide therapy in pheo-paras

- Overall results for PRRT in paraganglioma and pheochromocytoma are promising with response rates (SD and PR) of over 60% and long term survival

- 177Lu-DOTATATE has a favorable risk profile

Kong et al J Clin Endocrinol Metab 2017;102:3278-3287
Lutate in head and neck paragangliomas

- Retrospective analysis of 7 pts with HNPGLs treated with Lutate

- After treatment, all had stable disease; four had reduced tumor

- May be suitable for HNPGLs refractory or unsuitable to surgery and/or radiosurgery
Agenda #3: Detecting PPGL early

- Tumor size is strongly related to risk of metastases
- Detecting PPGL early gives best possible chance of cure

1. Genetic testing of those families at risk
2. Pro-active follow-up of those family members carrying genetic mutation
 - annual biochemical measurements
 - bi-annual rapid whole-body magnetic resonance imaging and/or 68Ga-DOTATATE-PET imaging
Overview: ticking genetic time bombs

- Hereditary paraganglioma syndromes due to mutations in >12 different genes

- Bespoke care:
 1. Tailored information about personal risk
 2. Early identification of tumours
These ‘rare’ syndromes are more common than we expected

- Using large genetic databases, it is possible to estimate the prevalence of specific genetic conditions

- ~4,000 Australians have hereditary pheochromocytoma (Pheo) mutations
Positive impact of genetic test on the patients outcome

Patients with up to 5 metastases at diagnosis of malignancy

Survival after the diagnosis of first metastasis

Slide courtesy of A-P Gimenez-Roqueplo Buffet et al JCEM 2019;104:1109-1118
Logistic problems of screening

1. Timely diagnosis of heritable basis of PPGL
2. Capture of all family members at risk
3. Regular follow-up for carriers
 1. Cost, radiation, reminders
 2. Action on positive results
4. Evolution of screening protocols

○ PATIENT ENGAGEMENT: avoid “loss to follow-up”
Conclusions

1. Drivers of pheos: **HIFs and telomeres** important targets to inhibit HIFs, telomerase

2. Therapy development: extensive pipelines exist

3. Detecting PPGLs early: feasible in **hereditary** disease

Radionuclide therapy holds promise

Patient engagement Screening protocols
Collaborations and Funding

Peter Mac
- Rod Hicks
- **Richard Tothill**
- Aidan Flynn
- Alison Trainer

QUT
- Emma Duncan

SEALS
- Michael Wright
- Talia Novos
- Chris White

NIH (USA)
- **Karel Pacak**

Europe
- Graeme Eisenhofer
- Mercedes Robledo, M Mannelli

NZ
- Mike Croxon, Marianne Elston

Hillcrest Foundation

PheoPara Alliance

NHMRC

PARADIFFERENCE Foundation